

MixEmul

Documentation

Version 0.3.3

© Copyright 2014, Rutger van Bergen

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 1

Table of Contents

1 What, why and how... 3

1.1 What is MixEmul? .. 3
1.2 But why write a MIX emulator (and in .NET even)? ... 3
1.3 Why not write MMixEmul? ... 4
1.4 What do I need to run MixEmul? .. 4
1.5 Will it actually work? .. 4
1.6 What about the legal mumbo-jumbo? ... 4
1.7 Can I have the source code? ... 5
1.8 Who are you anyway? .. 5

2 Running and using MixEmul .. 6
2.1 Starting MixEmul ... 6
2.2 Main window overview .. 6
2.3 Control strip .. 6
2.4 Registers region .. 8
2.5 Symbols region ... 8
2.6 Memory region .. 9

 Description ... 9 2.6.1

 The instruction editor .. 10 2.6.2

 Searching .. 11 2.6.3

2.7 Devices region ... 12
2.8 Messages region ... 12
2.9 Status bar ... 12

3 Using the assembler ... 13
3.1 Overview ... 13
3.2 MIXAL input format ... 13
3.3 Invoking the assembler ... 13
3.4 Assembly result window ... 14

4 Using devices .. 15
4.1 Device implementation .. 15
4.2 The device editor .. 16

 Binary devices ... 16 4.2.1

 Text devices .. 17 4.2.2

4.3 Teletype window ... 19
5 Interrupts ... 20

5.1 Introduction ... 20
5.2 Interrupt types ... 20

 Forced interrupts .. 20 5.2.1

 Timer interrupts ... 20 5.2.2

 Device interrupts .. 20 5.2.3

5.3 MixEmul implementation specifics ... 20
5.4 Manual mode switching ... 21
5.5 Control program ... 21

6 The floating point module .. 22
6.1 Introduction ... 22
6.2 Module description .. 22
6.3 Meaningful symbols .. 23
6.4 Floating point debugging .. 23

7 Profiling .. 24
7.1 The concept ... 24
7.2 The MixEmul profiler ... 24

 Usage ... 24 7.2.1

 Additional notes ... 26 7.2.2

8 Using the MIX loader .. 27
8.1 Introduction ... 27
8.2 The Go button .. 27
8.3 The loader program .. 27
8.4 Making and using exports .. 28

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 2

 Export card deck description .. 28 8.4.1

 Exporting assembled programs ... 28 8.4.2

 Exporting memory areas ... 28 8.4.3

 Using exported card decks ... 28 8.4.4

9 Preferences ... 29

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 3

1 What, why and how

1.1 What is MixEmul?

MixEmul is an emulator for the MIX computer that is described in The Art of Computer
Programming (TAOCP) series of books from D.E. Knuth. MIX is a mythical, non-existent
computer with features similar to those of real computers of the 1960s. It – or more
accurately, its assembly language MIXAL – is used as the foundation for the text of
aforementioned books.

MixEmul completely emulates the entire MIX instruction set. With that I mean that MixEmul not
only performs the actions that an instruction should – like multiplying when it encounters a MUL
instruction –, but it does it in the way MIX would. For example, the time unit (“tick”) counts that
are included in TAOCP Volume 1 are implemented as well. Also, as TAOCP specifies, I/O operations
are performed in the background.

Speaking of I/O, all 21 MIX I/O devices (tapes, disks, card reader, card punch, printer,
teletype and papertape) are implemented in MixEmul.

MixEmul lets you edit the contents of MIX’s registers and memory before, during and after
program execution using a number of editor types and review device status in a single glance. It
includes a breakpoint feature and allows programs to be run in the background. It includes the
GO button functionality, supports interrupts, comes with the floating point module, performs
execution profiling and it’s even mildly configurable.

Oh, I’d almost forget, it incorporates a MIXAL assembler too. This means that you can write MIXAL
programs using any text editor you like and then load them into MixEmul to debug and run them.

In a few words: MixEmul contains all features that I think I need to be able to better absorb the
contents of the TAOCP books.

1.2 But why write a MIX emulator (and in .NET even)?

Well, I actually wrote MixEmul for a number of reasons, being:
1. I believed a good MIX emulator would allow me to get more joy and knowledge from

reading TAOCP;
2. I didn’t think there was a sufficiently usable MIX emulator available for the Windows

platform until I completed MixEmul;
3. I had a long vacation and not much to do;
4. It was a lot of fun to write.

So, the fact you might be able to use it wasn’t actually one of the reasons. However, if you do I
won’t hold it against you either.

I wrote it in .NET because I like the characteristics of the .NET platform and the C# language. I
used to program in Java which is another great platform and language. However, I think the
creators of C# managed to take some of the quirks out of Java and include new bits and pieces
that make using it just that much more pleasant.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 4

1.3 Why not write MMixEmul?

There is a number of reasons for that as well:
1. The prints of the books I recently purchased are still based on MIX, and only mention MMIX

(a more modern replacement for MIX) as a future development;
2. MMIX is a lot more powerful and complex than MIX and therefore its emulator would need to

be also. Writing MMixEmul would therefore be a major task that might start to feel like work.
Not that I mind programming for work, but I already have a job;

3. My vacation wasn’t that long.

Having said that, I did attempt to write the code for MixEmul in such a way that it might be used
as the foundation for an MMIX emulator. Of course, I do realize that I have probably made all the
wrong decisions while designing MixEmul’s structure, which means that that will prove impossible
if and when I actually try to do it. But hey, I’ve tried, haven’t I?

1.4 What do I need to run MixEmul?

This:
1. A computer running Windows;
2. The Microsoft .NET Framework version 3.5 (or higher, I guess);
3. A directory to unpack the contents of the ZIP archive you found this document in;
4. Enough disk space for the device files of those devices you choose to use. The size of the

device files for all devices except the disks depend on yourself and/or your programs. The
device files for the disks are 2,457,600 bytes each.

Regarding requirements 1 and 2 I should add that it might be possible to run MixEmul on other
platforms than Windows using Mono. However, I haven’t tried that and am not planning to
either. If you do try it please let me know what your findings are.

1.5 Will it actually work?

To be honest, I don’t know, because I haven’t yet used all instructions in the MIX instruction set.
Nevertheless I decided it was time to (have other people) start using MixEmul. Of course, I did do
some tests and I have been able to run a number of MIXAL programs on it. Amongst those are the
Primes (TAOCP section 1.3.2), Easter (TAOCP 1.3.2 exercise 14) and Permutations (TAOCP section
1.3.3) programs. These programs have been included in the ZIP file, by the way.
I’ve also successfully performed some I/O operations on all MIX devices.

In short, everything I’ve used myself so far seems to work.

If you do find a bug and would like me to fix it please let me know and I’ll attempt to set it
straight.

1.6 What about the legal mumbo-jumbo?

There isn’t any.

MixEmul is completely free and you may use it in any way you like. If you manage to build a 6
billion dollar corporation on top of it without sending me as much as a thank-you e-mail then that’s
fine by me. (However, in that case I would be more than happy to add some improvements to the
program for just 10% of your company’s shares.)

For the price you pay for MixEmul you get an appropriate amount of warranty: none. In other

words, MixEmul is provided as is and if you do choose to use it then you do so at your own risk. If

it doesn’t do anything useful, erases your hard disk or eats your dog you’re on your own. However,

in the first case you could drop me a note in which case I’ll see what I can do.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 5

1.7 Can I have the source code?

Maybe. You will have to tell me what you want to use it for and then I’ll decide if I think that’s a
good enough reason. Improving or extending MixEmul would be a good reason, but then I’d first
like to agree with you on how you’ll be sending the improvements that you’ve made back to me.
I’m just a bit of a quid pro quo guy with this sort of thing.

Also, please be aware that the source code is almost completely liberated of any
documentation. Bad programming practice maybe, but I did this largely for the fun of it.

1.8 Who are you anyway?

I’m Rutger van Bergen, a 36 year old computer science undergraduate born and living in The
Netherlands.

I have an e-mail address that you can reach me on, it’s rbergen@xs4all.nl. Because I also have a
job and a life I can’t guarantee any response times but I do guarantee that any requests to do
your school assignments for you will be happily ignored. So don’t even think about sending them.
Don’t do it. Really.

If you contact me to report a bug, please check that you are using the latest version that is
available. The full version number is shown in the About window, which can be opened from the
Help menu. The current version of MixEmul is available from the MixEmul web page, which is
located at http://rbergen.home.xs4all.nl/mixemul.html.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 6

2 Running and using MixEmul

2.1 Starting MixEmul

MixEmul can be started by double-clicking on MixEmul.exe, after unpacking the ZIP file you got
this document from.

2.2 Main window overview

When MixEmul starts its main window is shown. It looks like this:

The main window consists of a number of regions which are discussed in the following text.

2.3 Control strip

The control strip is located at the top of the main window. It looks as follows:

The control strip contains the following items:
 An editable field (PC) that shows the current value of the program counter, i.e. the memory

address from which the instruction to execute (the current instruction) will be loaded if the
Tick, Step or Run buttons are pressed. You can change the program counter value by editing
the field’s contents and pressing Enter. The program counter memory address can be made
visible in the memory region (see section 2.6) by clicking the Show button next to it.
Please note that the PC field always shows the value of the main program counter, even if
MixEmul is in Module mode and the Floating Point tab is selected in the memory region.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 7

 A read-only field that shows the current value of the tick counter, i.e. the number of time
units that have passed since program startup or the last system or tick counter reset. The
tick counter can be reset to 0 by clicking the Reset button right next to it.

 A Tick button. When this is pressed in Normal or Control mode, MixEmul runs for precisely one
time unit. Depending on the current instruction and the status of Mix this may have the same
effect as clicking the Step button, or have no visible effect at all. If MixEmul is in Module mode,
one module instruction is executed (irrespective of the actual tick count of the instruction in
question) without the tick counter being increased. Please refer to chapter 5 for more
information about Normal and Control modes, and chapter 6 for more information about
Module mode.

 A Step button. Pressing this will run MixEmul until the current step is finished. A step is finished

when the program counter changes from the value it has at the time of pressing Step to
another value. Note that the current instruction might execute multiple times within a single
step. An example of this is when the current instruction is JBUS *(18) and the printer is busy.

 A Run button. Pressing the Run button will run MixEmul until one of the following

conditions occurs:

 The HLT instruction is executed. In this case MixEmul, or rather the tick counter,

continues running until all busy devices are ready.

 Teletype input is required but not available (see the discussion on the teletype

window in section 4.3).

 A breakpoint is reached.

 A runtime error occurs.

 The Stop button is pressed.

While MixEmul is running after clicking Step or Run, the Run button changes into a Stop
button. Clicking this will stop execution after completing the then current tick.

 A Go button. This button will activate the MIX loader. Please refer to chapter 8 for more

information about using the MIX loader and this button.

 A Detach/Attach button. This button can be used to change MixEmul’s execution mode.

MixEmul can run in either of the following modes:
 In Attached mode the main window is regularly updated when MixEmul is running. The

controls, registers, memory and devices regions are updated to show the current status of

the respective parts of the emulator. Using this mode allows you to monitor the effects of

your programs as they are running. However, because the updating of the main window

takes time, programs run slower than in Detached mode.
 In Detached mode MixEmul runs the programs it executes in the background. In this mode

the main window is not updated until execution stops, but programs will run faster.

The execution mode can be changed when MixEmul is running.

 A Clear Breakpoints button. Clicking this button will clear any breakpoints that are

currently set.

 A Reset button. Clicking this will Reset MixEmul. All register and memory values are set to 0,
as are the program and tick counters. All devices are reset as well.

 A Show/Hide Teletype button, which does exactly what its name implies. More
information about the teletype can be found in section 4.3.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 8

2.4 Registers region

The registers region looks like this:

It contains the following items:
 Value editors for the registers. Values can be edited per byte (left of the equal sign) or as a

composed value (right of the equal sign). The editors for rA, rX and the index registers support

negative values. In the byte editor the sign can be changed by clicking it.

A byte or composed value that has been edited but not yet applied is shown in blue.

Changes are applied by pressing Enter or leaving the field in question and can be aborted

by pressing Escape.

 An overflow indicator/editor. The box is checked when the overflow flag is set.

 A comparison indicator/editor. The current value of the comparison register is shown, it can be

changed by clicking the indicator.

2.5 Symbols region

The symbols region looks like this:

Upon loading a MIXAL program into MixEmul, the symbols region shows the named
symbols that were included in said program.
It is possible to perform the following actions using the symbols region:
 Adding a new symbol, by entering a unique, valid, symbol name and the value it should have,

and pressing the Set button.
 Modifying an existing symbol, by entering the symbol’s name or selecting it in the list,

entering the symbol’s new value, and pressing the Set button.
 Removing an existing symbol, by entering the symbol’s name or selecting it in the list, and

pressing the Unset button.

The symbols that are included in the symbols region, regardless if they are loaded from a
program or entered manually, can be used in instructions that are entered into the instruction
editors in the memory region (see the next section).
For those symbols of which the value is a valid memory address, the address in question can be
made visible in the memory region either by double-clicking the symbol or by selecting it and
pressing Enter.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 9

Please note that the symbols region shows the symbols for the memory tab that is selected in the
memory region. That means that if the Floating Point memory region tab is selected, the symbols
region shows the symbols for the program that is loaded into the floating point module.
For more information about the floating point module, please refer to chapter 6.

2.6 Memory region

2.6.1 Description

The memory region looks like this:

It contains two tabs, one for MixEmul’s main memory and one for the memory of the floating point

module.

Each tab contains the following items:
 An editable field that contains the address of the first visible memory word.

 Two navigation buttons, with which it is possible to navigate backwards and forwards in the
history of memory addresses that have been shown. The address history includes those

addresses that have been selected by user actions like setting the first visible address, editing

the program counter or double-clicking a symbol in the symbol region.
 Three buttons with the delta (Δ), sigma (Σ) and pi (Π) characters, which I could not find on my

keyboard. Clicking any of these will put the character that is shown on the button on the
clipboard.

 An Export button with which (part of) the memory’s contents can be exported in a format that
can be used in conjunction with the MIX loader. Please refer to chapter 8 for more information
about using the MIX loader and this button.

 At the far right, just above the scroll bar, two buttons with which it is possible to browse
through the areas of memory that are not empty. In this context, a memory word is “not
empty” if it either contains a value different than +0, or has an assembled line of source code
associated with it. If either the first or last memory words that aren’t empty are currently being
shown, the corresponding browse button will be disabled.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 10

 A value editor for each of the memory words. Each of these consists of the following:

 A checkbox that can be used to mark the address as a breakpoint;

 The memory word’s address. If the address is equal to the program counter, the

address and checkbox are marked in yellow;

 Byte and composed value editors that are identical to those for rA and rX (see the

discussion of the Registers region in section 2.4);

 A character editor. Each character corresponds to one byte of the memory word. Byte
values for which no character is available are shown as a vertical block (█);

 An instruction editor.

2.6.2 The instruction editor

The instruction editor merits a slightly more detailed discussion. The instruction editor for a

memory word shows, if possible, which instruction the word’s value represents. Values that do not

represent an instruction are indicated with the text Not an instruction.

Being an editor, it is also possible to enter the instruction you want the memory word to contain.

Instructions entered in the editor must comply with MixEmul’s MIXAL format (see the discussion

of MixEmul’s assembler in section 3.2), with the following restrictions:
 The location field is not supported and must not be specified;

 Only MIX instructions are supported. That means that the following instructions cannot be

entered: EQU, ORIG, CON, ALF and END;

 In the address field, the only symbols that are supported are those included in the

symbols region (see the previous section), and *.

As with the other editors, any changes made can be applied by pressing Enter or leaving the editor.

Any invalid parts of the instruction (both in case of a word value being shown or an instruction
being parsed) are marked in red. The actual errors are shown in the editor’s tooltip, which can
be made visible by hovering the mouse cursor over the editor:

Please note that an invalid instruction will not be applied. This means that if the editor is left while
it contains an (edited) invalid instruction, the changes that were made are lost.

If a program has been loaded into memory, the memory addresses that contain instructions or
values (CON and ALF) that were assembled and loaded from the source file are marked by a
different background color. The actual instruction that was loaded is then shown in the editor’s
tooltip, in addition to any instruction errors that were found:

Right-clicking an instruction editor shows a menu through which the memory address that is
referred to in the instruction’s address field can be made visible in the memory region. Through
another option in the same menu this can be done with indexing applied. Either option is only
available if the address (and index, if applicable) is in fact valid.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 11

2.6.3 Searching

The contents of the memory can be searched via the “Find in memory” option in the View menu.
When chosen, a window will open that looks as follows:

The various controls have the following functions:
 In the “Find text” editor (you’ll never guess this!) the text can be entered that needs to be

searched for. Only characters that are part of the MIX character set can be used; other
characters won’t be found by definition.

 The buttons under “Clipboard” perform the same function as the ones that are part of the
memory region itself (see above).

 Using the options in the “In” box, it is possible to indicate which editors need to be searched.
The available options are the composed value (numerical) editor, character editor and/or
instruction editor, each as discussed in earlier text in this section. At least one editor must be
chosen.

 An option to indicate if the search should be performed using “whole word” matching. This
means that the search text will only be considered to be found if it is not part of a longer “word”
(to be precise, a bigger consecutive set of letters or numbers). For instance, if whole word
matching is selected and a search is performed for “15” (excluding quotes), then “(15)” will be
considered a match, but “150” or “A15B” will not.

 An option to indicate if the search should wrap around the end of the memory. That is to say, if
the search should continue at the beginning of the memory if no match is found before the end
of it.

After pressing Find, the search will be performed in the current (selected) tab of the memory
region, starting at the current location of the cursor.

It is possible to perform the last search again from the now current location, using the “Find next”
option in the View menu.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 12

2.7 Devices region

The devices region looks like this:

It contains indicators for each of MixEmul’s devices.
Each of these shows the following:
 The device number, as used in the F-field of the I/O instructions.
 An abbreviated name of the device. The following abbreviations are used:

 TAP: Tape
 DSK: Disk
 CRD: Card reader
 CWR: Card punch
 PRN: Printer
 TTY: Teletype
 PTP: Paper tape

 The device’s status. For idle devices the abbreviated name is shown on a green background,
busy devices on a yellow one. More information on the device’s status is shown in the
indicator’s tooltip, which is made visible by hovering the mouse cursor over the indicator:

Right-clicking an indicator opens a menu that shows the following:
 If the device supports input, output or both;
 An option to reset the device to its initial state.

Right next to the indicators is a button with which the device editor window can be opened or
closed. More information about the device editor can be found in section 4.2.

2.8 Messages region

The messages region looks like this:

Messages that are generated by MixEmul or its devices are shown in this region, newest
message first.
If the message includes an address then that address can be made visible in the memory region
by double-clicking the message, or by selecting the message and pressing Enter.

The messages region can be emptied with the Clear button and resized with the splitter that is
located directly above it.

2.9 Status bar

The status bar looks as follows:

The mode can either be Normal, Control or Module, and can be alternated between Normal and

Control by clicking the mode box (button). If the button is pressed when the mode is Module, it will

switch to Normal.

Please refer to chapter 5 for more information about Normal and Control modes, and chapter 6 for

more information about Module mode.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 13

3 Using the assembler

3.1 Overview

MixEmul’s built-in assembler can be used to parse MIXAL programs written using an
external editor and then load them into MixEmul.

At the moment MixEmul doesn’t allow you to assemble your programs into binary executables. The
reasons for this are that (a) I don’t think that there would be much use for them besides loading
them into MixEmul, and (b) the assembly of typical MIXAL programs doesn’t take enough time to
merit avoiding it. That said, it is possible to export assembled programs as card decks that can be
used with the MIX loader. Please refer to chapter 8 for more information about using the MIX
loader and creating and using exports of assembled programs.

The assembler is a two-pass assembler, which performs the syntactic checks during the first pass
and the semantic checks during the second. If your program is correct you won’t notice anything of
this, but you will if it contains both syntactic and semantic errors. In that case only the syntactic
errors are reported.

3.2 MIXAL input format

The MIXAL assembler accepts the terminal input format that is discussed in TAOCP section 1.3.2
with the following exceptions:
 Any characters that are included in an ALF address field but are not known to MIX are

parsed as a byte with value 63.

 The address field of the ALF instruction starts with the first non-blank character after the

blank(s) that follow the op field. To allow the ALF address field to start with a blank, double
quotes (“) can be used around the address field.
The last double quote of the instruction line that is followed by a blank is considered to be the
closing quote for the address field. This allows for double quotes to be included in the address
field without the need for “escaping” them. (Not that there’s much use in doing so, because the
double quote isn’t part of the MIX character set. But anyway…)

Consider the following examples:
 ALF FIRST and ALF “FIRST” both yield a word containing the characters FIRST

(06|09|19|22|23).
 ALF FIVE and ALF “ FIVE” yield different words. The first word contains FIVE followed by a

space (06|09|25|05|00), the second a space followed by FIVE (00|06|09|25|05).
 ALF “QUO”TE yields a word containing 18|24|16|63|23
 ALF “QUO” TE yields a word containing 18|24|16|00|00, and a comment TE.
 ALF “QUO” TE” yields a word containing 18|24|16|63|00

 The rule that the END instruction is the last instruction of a program is enforced. Any

instructions following an END instruction yield a warning and are treated as comment lines.

3.3 Invoking the assembler

MixEmul’s assembler is activated by opening a MIXAL program. This can be done using the “Open
program” option in the File menu.

The assembler is invoked automatically when the MIXAL program has been read from disk. After
assembly completes the assembly result window is shown.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 14

3.4 Assembly result window

This window shows the result of the assembly of an opened program. It looks as follows:

The lower part of the screen shows the messages that were generated during assembly. The
upper part of the screen shows an evenly indented version of the MIXAL program that was
assembled, with syntax coloring applied. Warnings and errors are also color-marked in the
program source code.

In this case three syntactical errors were found. If a message is selected in the message list,
the appropriate part of the source code is made visible and underlined.

If no errors were encountered during the assembly then the assembled program can be loaded
into MixEmul’s memory by pressing the Load button.
Furthermore, upon successful assembly, the Export button can be used to export the
assembled program in a format that can be used in conjunction with the MIX loader. Please
refer to chapter 8 for more information about using the MIX loader and this button.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 15

4 Using devices

4.1 Device implementation

A few words about the way the devices are implemented are in order. The I/O operations (IN,
OUT and IOC) are implemented as a series of steps. The general structure of these is as follows:
 IN: Initialization, Open file (if applicable), Read from file, Close file (if applicable), Copy read

words to memory
 OUT: Initialization, Copy words to write from memory, Open file (if applicable), Write to file,

Close file (if applicable)
 IOC: Initialization, Seek.

The number of ticks spent on the Initialization step is configurable per device (see the discussion
of the preferences window in chapter 9), as is the seek time per record/sector for those devices
that support seeking. Reading from and writing to memory is done one word per tick.

On binary devices (tapes and disks) words are stored as six bytes. The first byte contains the
word’s numeric sign (+ or -) and is followed by the five bytes of the word.

Text-based devices (card reader, card punch, printer, teletype and paper tape) are read from
and/or written to one line at a time. For example, if the instruction IN 1000(16) is executed then
one line is read from the card reader device file (default: crdin16.mixdev). If a line from an input
file is longer than the device’s record byte size (80 in case of the card reader) then the rest of the
line is discarded. If a line is shorter, then the remaining bytes in the record are set to 0.
On input any characters that are not known to MIX are parsed as a byte with value 63. On
output trailing spaces are dropped before a line is written.

Text devices are read from, and written to, using the ASCII character set. This means that of
the MIX character set, the delta, sigma and pi characters cannot be read or written.

On startup or after a (device) reset the location pointer is at the following position:
 For tapes, at the end of the device file;
 For disks, at the beginning of the device file (sector 0);
 For the card reader, at the beginning of the device file;
 For the card punch, at the end of the device file;
 For the printer, at the end of the device file;
 For the paper tape, at the beginning of the device file.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 16

4.2 The device editor

The device editor can be opened and closed by clicking the Show/Hide Editor button in the
Devices region of the MixEmul main window, or the Show/Hide Device Editor option in the View
menu.

Through the device editor, the contents of all of MixEmul’s devices except the teletype can be
viewed and, if applicable, edited. The teletype device has its own window, which is discussed in
the next section.

The device editor looks like this when opened:

The device editor contains 6 tabs, one for each type of device.

4.2.1 Binary devices

For the tapes and disks, a binary device editor is used. Through this editor, one
record/sector can be edited at a time.
It is made up of the following parts:
 A selection control to choose which tape/disk to edit. Next to it, the selected device’s file path is

shown.
 A button to delete the device file of the selected tape/disk, effectively resetting the device in

question.
 A checkbox to switch the device editor to read-only (to prevent unintended modifications of the

device’s contents).
 A text field and slider to select the record/sector to edit.
 A text field that shows/sets which word is shown at the top of the record/sector editor.
 Buttons to load Mix-specific characters onto the clipboard. These work the same way the

buttons in MixEmul’s main window’s memory region do.
 A list of editors for the words in the record/sector. These are identical to the editors in

MixEmul’s main window’s memory region, except that there is no instruction text field in the
device editor.

 For tape devices, buttons to append or truncate records to/from the end of the tape.
 Save and revert buttons to save or undo the changes to the current record.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 17

Note that upon changing to another record/sector or selecting another device (through the
aforementioned selection control) or device type (by clicking the appropriate tab), any changes to
the current record/sector will be automatically saved.

4.2.2 Text devices

For the card reader and paper tape, a text device editor is used.
Each of these editors allows all of the device’s contents to be edited at once.

It looks like this:

The editor is made up of the following parts:
 An indication of the selected device’s file path.

 A button to delete the device’s file, effectively resetting the device in question.
 A checkbox to switch the device editor to read-only (to prevent unintended modifications of the

device’s contents).
 A text field that shows/sets which card or record is shown at the top of the device

content editor.
 Buttons to load Mix-specific characters onto the clipboard. These work the same way the

buttons in MixEmul’s main window’s memory region do.
 A list of editors for the device’s contents. These are identical to the character editors in

MixEmul’s main window’s memory region, except that the maximum number of characters per
editor is equal to the respective device’s record length.

 Buttons to append or truncate cards/records to/from the end of the device.
 Save and revert buttons to save or undo the changes to the current device.

In addition to this, the card reader (which is shown above) includes a Load button, with which the

current contents of the card reader device can be replaced with that of a file. After the file is loaded,

the device pointer is reset to the beginning of the device file.

Although the button can be used to load any (text) file into the card reader, it was primarily added

to load exports from memory (see section 2.6) or the assembler (see section 3.4), and thus be

used with the MIX loader. Please refer to chapter 8 for more information about using the MIX loader
and this button.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 18

Note that upon selecting another device type (by clicking the appropriate tab), any changes to the
current device will be automatically saved.

For the printer and card punch, a read-only viewer is used. These are identical to the text editors
for the card reader and paper tape, except the following controls are not shown:
 The read-only check box
 The Mix character clipboard buttons
 The Append, Truncate, Save and Revert buttons

Besides the aforementioned Hide Editor button and menu option, the editor can also be hidden
using the Close button at the bottom right of the editor window.

Whenever a device editor is visible – the device editor window is visible and the device editor
tab in question is selected – the respective device’s file is monitored for changes. When a
change is detected, because the device was written to by MixEmul or manual modifications were
made, the device editor’s contents will be automatically reloaded. The minimum interval
between these reloads is configurable using MixEmul’s preferences window (see chapter 9).

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 19

4.3 Teletype window

The teletype window can be shown or hidden using the Show/Hide Teletype button on MixEmul’s
main window or the Show/Hide Teletype option in the View menu. The teletype window looks like
this:

The upper part of the screen shows data that the teletype has received from MIX (i.e. the data
that has been transferred using OUT …(19) instructions).
The output area can be cleared with the Clear button.

Input can be entered in the field at the bottom of the screen. If the “Echo input” option is
checked then input that has been sent (by pressing Enter or clicking the Send button) is echoed
in the output section, preceded by the prompt character (>).
Input is stored in an input buffer, where it is kept until it is retrieved using the IN …(19)
instruction.
If an IN instruction is executed while the input buffer is empty then program execution is halted
so that teletype input can be sent.

If the “On top” option is checked then the teletype window is kept in front of all other
windows.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 20

5 Interrupts

5.1 Introduction

Exercise 18 of section 1.4.4 of TAOCP describes the proposed extension of MIX with an interrupt

feature. This extension consists of the following:

 An additional 3999 words of memory, which are in negative address space. This means that the

total address space of MIX spans from -3999 to +3999.

 Introduction of a Control mode, next to the Normal mode that MIX usually runs in. The

additional memory with negative addresses just mentioned is only accessible in control mode.

That is to say, in Normal mode the accessible address space (still) spans from 0 to 3999.

 Introduction of a number of interrupt types that switch MIX into Control mode, and transfer

execution to an interrupt-dependent address.

MixEmul includes support for this interrupt extension, conforming to the specifications in said

TAOCP section exercise.

5.2 Interrupt types

5.2.1 Forced interrupts

A forced interrupt can be triggered by using the INT operation in Normal mode. After the contents

of the registers have been stored in addresses -9 to -1 and the switch to Control mode has been

made, execution transfers to address -12.

When the execution mode is switched back to Normal (by executing the INT operation in Control

mode), execution is resumed at the address that follows the one the original INT instruction was

loaded from.

5.2.2 Timer interrupts

Every 1000 ticks, the value at address -10 is decreased by 1. A timer interrupt occurs when this

value reaches 0. After storing registers and switching to Control mode, execution transfers to

address -11.

5.2.3 Device interrupts

A device interrupt occurs when a device finishes an I/O operation (IOC, IN or OUT) that was started

in Control mode. A device interrupt transfers execution to address -(20 + device ID) – being -20 for

the first tape unit, -38 for the printer and -40 for the paper tape, to name some examples – after

storing registers and switching to Control mode, as usual.

5.3 MixEmul implementation specifics

The following remarks apply to the interrupt implementation of MixEmul:

 Switching to Control mode does not change the direction of the program counter. That is to say,

the program counter increases on execution of instructions in Control mode, just as it does in

Normal mode. For instance, after executing ENTA 0 on address -80 the program counter will

change to -79, not -81;

 As specified in TAOCP, interrupts never actually occur in Control mode; they are queued

instead. The first queued interrupt, if any, occurs after execution mode has returned to Normal

and one “Normal mode instruction” has been executed. In the case of MixEmul, any unforced

(thus timer or device) interrupt occurs when the then current Normal mode instruction has

completed, and the program counter has been changed accordingly.

 The last remark in the previous point means that if, for instance, the instruction executed just

before an unforced interrupt is a successful jump instruction, the program counter will have
been set to the jump instruction’s target address when the interrupt occurs. Because of this,

when execution mode is switched back to Normal after an unforced interrupt has been handled,

the program counter is restored to the same value it had when the interrupt occurred.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 21

 The value at address -10 is only decreased if it is greater than 0. That means that the timer

interrupt will not occur if said address contains a value equal to or less than 0.

 The INT instruction is only supported in MIX itself, which is to say it is not supported in the

floating point module, more information of which can be found in chapter 6.

 It is possible to load MIXAL programs into negative memory space when the execution mode is

Normal, as it is possible to edit memory contents using the memory region of MixEmul’s main

window (see section 2.6). As mentioned, executing such programs is only possible in Control

mode.

5.4 Manual mode switching

MixEmul allows the manual switching between Normal and Control modes by use of the mode

button in the main window status bar (see section 2.9). When a mode switch has been made,

MixEmul’s behavior is exactly as it would have been if the mode switch had occurred because of

interrupt handling. Amongst others, this means that:

 Addresses -3999 to -1 are only accessible to MIX instructions in Control mode. This also means

that if the program counter is a negative value on a switch to Normal mode, it will be set to 0.

 After a manual switch to Normal mode, the first of any queued interrupts – being any unforced

interrupts that were triggered while in Control mode – will occur after execution of one

instruction has completed.

5.5 Control program

MixEmul includes a feature to automatically load a control program upon startup and after a system

reset. If a file “control.mixal” exists in the directory MixEmul is started from, it will be loaded into

memory. If the file does not exists, loading it is silently skipped.

Although this feature is intended to provide implementations for the various interrupt handlers in

negative address space, it can include any instructions in any part of the address space.

The default control program supplied with MixEmul immediately transfers control back to Normal

mode on every interrupt, and ensures the timer interrupt is disabled.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 22

6 The floating point module

6.1 Introduction

Section 4.2.1 of TAOCP describes an optional, single-precision floating point hardware module that

can be added to MIX “at extra cost”. The good news for today is that MixEmul includes this floating

point module for free.

The floating point module provides the FADD, FSUB, FMUL, FDIV, FLOT, FIX and FCMP operations

that are discussed under “Floating point hardware” in said section of TAOCP.

6.2 Module description

The MixEmul floating point module consists of a separate range of memory addresses (200 by

default), in which a floating point MIXAL program is loaded when MixEmul starts. The program in

question is “floatingpoint.mixal”, which must be available in the directory from which MixEmul is

started.

When a floating point instruction is encountered by MixEmul, control is transferred to the floating

point module, which executes a specific part of the floating point program (see the “meaningful

symbols” section, below). After that part of the program has finished executing, either successfully

or with error, control is transferred back to the main MixEmul program.

Although the collection of MIX instructions executed for a floating point operation would typically far

exceed the tick counts mentioned in section 4.2.1 of TAOCP, the tick counter will increase in

accordance with said TAOCP section. In fact, the floating point module will execute all the

instructions for a particular floating point operation during the last tick of that operation.

As mentioned, the floating point module comes with its own set of memory addresses, which is

accessible via the Floating Point tab of the main window’s memory region (see section 2.6). It does

not include a separate set of registers. Instead, while the floating point module operates, the MIX

registers are stored in and subsequently reloaded from 9 memory words that are automatically

added to the end of the floating point module memory range. Although these memory words are

visible on the memory region’s Floating Point tab, they cannot be reached by the floating point

program itself.

In case of the FADD, FSUB, FMUL, FDIV, FLOT and FIX operations, the contents of the rA register at

the end of the floating point operation are kept and loaded into rA after the registers have been

restored. In case of the FCMP operation all registers are restored to the values they carried before

execution of the floating point operation started; in this case the comparison indicator is carried

over from the floating point module to regular MIX operation.

In all cases, any over- or underflow, including division by zero, is signaled by setting the overflow

indicator after reloading the registers.

The default implementation of the floating point program is based on the code for the floating point

routines as it is included in section 4.2.1 of TAOCP, and for the FIX and FCMP operations, in

exercises in later sections. The code has been modified slightly, mainly to work with the way that

the MixEmul floating point module’s interaction with the program has been implemented. This is

described in more detail in the following section.

The default floating point program sets EPSILON (ϵ) to be

 .

Floating point instructions can only be issued from the “main” MIX module; it is not possible to

include a floating point instruction in the floating point program itself.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 23

6.3 Meaningful symbols

The link between the MixEmul floating point module and the MIXAL program it executes is based on

the presence of a number of symbols, representing addresses, in the latter. They are discussed

here, with the note that they are only really relevant to those who want to replace the default

floating point program with their own. Symbols that are marked as mandatory must be present in

any program loaded into the floating point module; it will not work without them.

 PRENORM: Transfer is controlled to this address to “prenormalize” the value of rA and the

value of the parameter for the FADD, FSUB, FMUL and FDIV operations. In that, “the

parameter” is loaded from the instruction’s indexed address operand, and the prenorm routine

is executed once for each of the values mentioned. This symbol is mandatory.

 ACC: This address is used to store the value of rA at the start of a binary floating point

operation (FADD, FSUB, FMUL, FDIV or FCMP), after which the operand value will be loaded into

rA. This symbol is mandatory.

 FADD, FSUB, FMUL, FDIV, FLOT, FIX, FCMP: The implementation of any floating point

operation that is actually used must start at the address marked by the corresponding symbol.

Although it is not strictly necessary to have all symbols/addresses in place, any floating point

operation for which one is not present will fail when its execution is attempted.

 EXIT: This address signals the end of a floating point operation or the prenormalization that

occurs before it. When the floating point module program counter reaches this address, control

is transferred back to MIX after restoring registers and setting rA/comparison indicator as

indicated in the previous section. This symbol is mandatory.

 OFLO: If the program counter reaches this address, an error is raised indicating that the

overflow indicator was unexpectedly set. This condition causes the execution of the current

floating point operation to be aborted.

 EXPUN: The program counter reaching this address signals exponent underflow. Execution of

the floating point program does continue when this occurs.

 EXPOV: The program counter reaching this address signals exponent overflow. Execution of the

floating point program does continue when this occurs.

 FIXOV: The program counter reaching this address signals overflow during float to fix

conversion (i.e. the FIX operation). Execution of the floating point program does continue when

this occurs.

 DIVZRO: The program counter reaching this address signals division by zero. Execution of the

floating point program does continue when this occurs.

6.4 Floating point debugging

As indicated before, execution of floating point operations is basically considered to be atomic,

which is to say that all instructions that the floating point module needs to execute to perform a

floating point operation, which includes any prenormalization, are executed in one tick. When

MixEmul performs a step or is running, both according to the definitions in section 2.3, this

translates into the tick counter being increased in accordance with the specifications of section 4.2.1

of TAOCP. However, it is possible to trace the execution of a floating point instruction using the Tick

button.

If the Tick button is pressed when the floating point module is about to execute a floating point

operation, MixEmul switches to Module mode. In Module mode, each time the Tick button is

pressed, the floating point module executes one instruction of the floating point program. As with

the main MIX module, execution can be followed using the memory region (see section 2.6),

although in this case on the Floating Point tab. Using either the Step or Run buttons will resume

execution in the way just described.

When the floating point module finishes executing a floating point operation, either successfully or

due to an error condition, MixEmul switches execution mode back to what it was before execution of

the floating point operation started. After that, regular operation continues.

Besides tracing the execution of floating point operations step-by-step using the Tick button, it is

also possible to set breakpoints in the floating point module. When a floating point module
breakpoint is hit then program execution is interrupted as usual, with the exception that MixEmul

will be in Module mode. The Tick, Step and Run buttons operate accordingly.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 24

7 Profiling

7.1 The concept

Often, it is not only relevant to see if a program works, but also what the performance

characteristics of the program are. This is true for many if not most programs, and therefore also

for MIXAL programs running in MixEmul.

One way to measure the performance characteristics of a program is counting how many times its

instructions are executed in the course of a program run, and/or how much time is spent on that

execution.

The measurement of these figures, and others in more complex scenario’s, is called profiling.

7.2 The MixEmul profiler

7.2.1 Usage

The MixEmul profiler can be enabled using the “Enable profiling” option in the Tools menu. When

selected, a counter field will be shown for each word in the memory editor (see section 2.6), at the

right-hand side of its instruction editor. It looks as follows:

By default, upon execution of a Tick, Step or Run command (see section 2.3), the counters will be

updated to reflect how many times each instruction is executed. This can be changed with the

“Show tick counts” option in the Tools menu; then the counters will show how many ticks are spent

on the execution of each instruction.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 25

As an example, the following is what is displayed after the Primes example program has been run,

with profiling showing execution counts:

When the “Show tick counts” option is selected, the result is as follows:

As these screenshots show, by default the profiling counters are color coded from dark green

(lowest execution/tick counts) to bright red (highest execution/tick counts). This can be switched

off using the preferences window (see chapter 9).

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 26

7.2.2 Additional notes

The following remarks apply to the MixEmul profiler:

 The profiling counters will be reset when MixEmul is reset in its entirety, or when a program is

loaded using the assembler (see chapter 3). They can also be manually reset independently

from other parts of MixEmul using the “Reset counts” option in the Tools menu.

 When enabled, profiling is not only performed for the main memory region, but also for the

instructions in the floating point module.

 Disabling profiling, using the “Enable profiling” option in the Tools menu, does in itself not reset

the profiling counters, even though they are hidden. However, updates to the counters will no

longer occur until profiling is switched back on.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 27

8 Using the MIX loader

8.1 Introduction

Exercise 26 of section 1.3.1 of TAOCP describes that MIX includes a GO button, which performs the

following actions:

1. One card, containing (the first part of) the loader program is read into memory locations 0 to

15.

2. When reading has finished, the program counter is set to 0, as is rJ.

3. Execution is started.

MixEmul provides an implementation of this feature, an example loader program, and the ability to

create and use export files that can be used in conjunction with it. Each of these is described in the

following section.

8.2 The Go button

The MixEmul implementation of the MIX loader is activated by pressing the Go button on the main

window’s control strip (see section 2.3). When this button is pressed, the steps discussed in the

previous section are performed. In other words, the following MIX instructions are effectively

executed without loading them into memory:

IN 0(16)

JBUS *(16)

JMP 0

As indicated above, after/with the JMP instruction, rJ is also set to 0, which is an action for which no

MIX instruction exists.

It should be noted that while the loader is running, the tick counter is increased as usual for the

instructions just mentioned, and any other busy devices also continue to operate. Resetting rJ to 0

is considered to take 1 tick.

8.3 The loader program

MixEmul comes with an example loader program that can be used to process information and

transfer cards that conform to the specifications discussed in exercise 26 of section 1.3.1 of TAOCP,

with the following remarks:

 As there is no way to “overpunch” a minus (-) over a digit to indicate the corresponding word

value is negative, a negative word value on an information card needs to be specified by

replacing its least significant (last) digit with a character between space (equaling -0) and the

letter I (equaling -9);

 This negative numbering scheme is also applied to addresses, to support the loader program

loading information cards into the control memory area and setting the program counter to a

negative value. Of course, MixEmul must be in Control mode when the loader program runs for

negative memory addresses to be accessible and thus for this to work. Please refer to chapter 5

for more information about Control mode and negative addressing.

 Due to the support for negative addresses, the loader program spans three cards instead of the

indicated limit of two.

 The program does not verify if information or transfer cards contain valid start/transfer

addresses or, for information cards, valid word values. That is to say, the loader program will

happily load information cards that overwrite the loader program as it is running, or contain

word values that exceed the MixEmul 6-bit byte maximum word magnitude of 1,073,741,823.

Of course, any chaos that ensues is the sole responsibility of whoever it is that loaded the cards

in question into the card reader(…)

The loader program is included in the Sample programs folder in the MixEmul ZIP file.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 28

8.4 Making and using exports

8.4.1 Export card deck description

From the assembler and the memory region it is possible to easily create export card decks (in the

shape of text files) that can be used with the MixEmul loader implementation. These card decks

start with the cards that contain the loader program, and are followed by the information and

transfer cards that encode the assembled program/memory area that is exported.

By default, the loader program cards that are exported contain the example loader program that is

supplied with MixEmul, which is described in the previous section of this chapter. It is possible to

have another loader program be exported by specifying the desired loader instruction cards in the

MixEmul preferences window (see chapter 9).

With this, the following should be noted:

 A maximum of three loader cards can be configured;

 When exports are made, any empty instruction cards are skipped. That means that it is possible

to prevent any loader instruction cards being exported by configuring three empty cards.

It is pointed out that in case one wants to use another loading program, a good approach to use is

the following:

1. Write/obtain the program in MIXAL, having it start at address 0,

2. Load it using the assembler, and

3. Output the memory addresses that contain the program to the card punch.

As the maximum number of loader program cards is three, the loader program cannot occupy more

than 48 consecutive addresses.

8.4.2 Exporting assembled programs

After a MIXAL program has been successfully assembled, it can be exported using the Export button

on the assembly result window (see section 3.4). When the button is pressed, a window is shown

with which the file name and location of the card deck file can be specified.

8.4.3 Exporting memory areas

It is possible to export (part of) the MixEmul memory contents using the Export button on either tab

in the memory region of the MixEmul main window (see section 2.6). When the button is pressed,

first a window is shown with which it is possible to specify what memory area is to be exported (by

means of specifying the first and last address), and what the program counter should be set to once

the memory area has been loaded. It looks like this:

When these parameters have been specified and OK is pressed, another window is shown with

which the file name and location of the card deck file can be specified.

8.4.4 Using exported card decks

Card decks that have been created using the methods described above can be loaded into the card

reader with the Load button on the card reader tab of the device editor (see section 4.2.2). The

card deck can then be executed by pressing the Go button discussed in section 8.2.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 29

9 Preferences

The preferences window can be accessed via the Preferences option in the Tools menu. It looks
similar to the following:

The following preferences can be changed:
 A selection of the colors that are used throughout MixEmul. Most of the color names speak

for themselves, but the following might need some explanation:

 Address text vs. Address field text. The Address text color is used for the address numbers

in the Memory region of the main window. The Address field text color is used for the

address fields of the MIXAL programs as they are shown in the assembly result window.

Similarly, the Location field, Op field and Comment text colors are used for the respective

fields of the assembly result window.

 The Rendered text color is used for text that displays information (e.g. in editors) which

has not yet been edited. The editing text color is used for text that has been edited but

the changes to which have not yet been applied.

 The loaded instruction text and background colors are used for instruction editors into

which a MIXAL instruction has been loaded by the assembler (see also section 2.6).

 If color coding should be applied to the profiling counters when profiling has been enabled.

Please refer to chapter 7 for more information about MixEmul’s profiling feature.

 The number of memory words that is made available to the floating point module. Please

ensure that a number of memory words is selected that is sufficient for loading and running

the floating point program. It is noted that the number entered here is increased by 9, to

allow the contents of the registers to be stored and loaded when execution respectively

enters and leaves the floating point module.

MixEmul must be restarted to apply any changes to this setting.

Please refer to chapter 6 for more information about the floating point module.

 The default directory for device files. This directory is used to store all device files for which

a specific file hasn’t been selected using the preference that is discussed next. Note that

any existing device files are not automatically moved if this directory is changed.

 The device files for individual devices. Note that an existing device file is not

automatically moved or renamed if this setting is changed.

MixEmul Documentation 0.3.3 © Copyright 2014, Rutger van Bergen

 Page 30

 Tick counts for a number of I/O operation steps (see also the discussion of the Devices region

in section 0). This enables you to modify the speed at which the MixEmul devices operate.

 The contents of the cards that are written at the top of export files that are made from either

the memory region (see section 2.6) or the assembler (see section 3.4). Please refer to

chapter 8 for more information about the MIX loader and the aforementioned export features.

 The minimum interval between reloads of the contents of the visible device editor, upon

modification of the device’s file on disk.

For each preference it is possible to revert to the default setting using the respective Default button
at the right. All preferences can be reset to defaults at once with the Defaults button at the bottom
of the window.

